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The purpose of these simulations is to gain a better understanding of the relative contributions to 
the beam perturbation from the main horizontal oscillation modes (yawing and rolling) of Q1, 
Q2, and Q3. For this purpose, a simple beam transport program was implemented with an 
EXCEL spreadsheet to calculate the horizontal beam envelop through the Q1, Q2, Q3 triplet up 
to the IP, with the possibility of specifying horizontal displacements of the singlets.  For now, the 
weak focusing properties of D0 and DX have been ignored, but could easily be included in the 
future if necessary. In a first simulation, quadrupole strengths have been adopted that correspond 
to β* = 2m at the IP. The parameters used listed in Table 1 were obtained from references [1] 
and [2]. 
 
TABLE 1 Quadrupole triplet parameters 
 

Quadrupole 
singlet 

Center-
line 
distance 
from IP 

Effective 
magnetic 
length 

Quadrupole 
strength for  
β* = 2m at IP 

Mass Physical 
length 

Diameter 
of cold-
mass 

 (m) (m) (1/m2) (kg) (m) (m) 
Q1 26.07 1.44 -0.0576 1130 2.24 0.35 
Q2 30.18 3.39   0.0561 2580 4.90 0.35 
Q3 34.80 2.10 -0.0557 2260 4.37 0.35 

 
 
 

 
Fig.1  Example where Q2 was displaced horizontally by 2 mm and the IP moved by 13.47 mm 



Figure 1 shows an example of the results. In this case Q2 was horizontally displaced by 2 mm, 
and the IP moved by 13.47 mm. An active Excel chart has been developed where one can use 
“spin buttons” and “push buttons” to change the lateral displacements of the three elements 
separately or together (rolling mode), to rotate them (jawing mode), to change the optics from 
Focusing-Defocusing-Focusing  (FDF) to Defocusing-Focusing-Defocusing (DFD), and to select 
1m or 2m values for β*.  Figures 2 and 3 illustrate schematically what “rolling” and “yawing” 
modes mean, and also indicate measured spring constants [3] appropriate for each motion. 
 
 
 

 
 

Fig. 2  Schematic representation of the two main oscillation modes. 
 
 
 

 
 
Fig. 3 ULTEM post assemblies shown un-deformed to the left, and deformed in the middle and 
to the right where the upper surface is respectively constrained or not constrained to remain 
parallel to the base. Respective measured spring constants are indicated. 
 



 
What is actually modeled here is a section of a beam transport, not of a cyclic accelerator. 
Therefore, the displacement ∆X0 of the beam at the IP due to a given motion of a quadrupole 
element will not be the same as the displacement ∆X in the ring. But the two beam displacements 
will be proportional, and the ones from the beam transport can thus be used to obtain relative 
beam motions values due to different motions of the triplet in the accelerator.  
 
Table 2 shows the ∆X0 values we obtain by displacing the ends of each magnet by 1 mm, either 
in-phase (parallel displacement or rolling mode) or out-of-phase (rotation around a vertical axis 
or yawing mode). We also show values for linked displacements for a hypothetical case where 
the three magnets would be rigidly connected. One of the objectives of these calculations is to 
determine if it would be advantageous to strengthen the links between the magnets within each 
triplet. 
 
 
Table 2    ∆X0 values (mm) for 1 mm displacements of the ends of the magnets 
 

 MODE D - F - D F - D - F 

Q1             ROLL -2.20 2.12 
     Q2       ROLL 6.73 -4.56 
          Q3   ROLL -2.79 4.18 
Q1             YAW 0.04 0.00 
     Q2        YAW 0.02 0.01 
          Q3   YAW -0.08 -0.06 
Q1-Q2-Q3   (linked) ROLL 1.74 1.74 
Q1-Q2-Q3 ` (linked) YAW -0.49 1.71 

 
 
The first interesting observation is that yawing motions of individual magnets have a negligible 
effect upon the beam when compared to the rolling motions. Therefore, if active damping is 
applied, it will probably be sufficient to damp the motion of the center of each mass, rather than 
both ends. This should reduce the cost and complication by a factor two. Since in reality there is 
likely to be coupling between the two main modes, the yawing mode will be attenuated anyway. 
We also see that the sensitivity to Q2 motion is the largest, with Q3 being a close second in the 
case of FDF focusing. 
 
We now turn our attention to the possibility of linking the magnets in such a way that, for 
practical purposes, they move together as a single rigid object. To compare this situation with the 
present situation where the masses are virtually decoupled, the data of Table 2 is not sufficient. 
In addition to knowing the beam responses to certain magnet displacements, we must also 
estimate the relative amplitude of these displacements. This is a more difficult problem since we 
don’t know the origin or nature of the driving forces. As a first approximation we shall assume 
that these forces can be represented by random horizontal forces of equal rms amplitude applied 
to both ends of each of the three magnets. We shall further assume that the amplitude of the 
motion in each case is simply determined by the rms magnitude of the applied force and the 
corresponding restoring spring constant. This ignores the fact that different mass configurations 



and vibration modes have different resonant frequencies and therefore “sample” different 
portions of the excitation spectrum. But we can’t do much better since we don’t know this 
spectrum.  
 
For the rolling mode the calculation is simple. If we call Fo the rms amplitude of the horizontal 
force applied to each end of each singlet, then for one singlet the rms force will be 21/2 Fo while 
for the linked rigid triplet it would be 61/2 Fo. On the other hand the restoring spring constant is 3 
times larger in the linked case. Therefore, with our approximations, the estimated amplitude for 
the linked case in the rolling mode will be 3 *  21/2 / 61/2 = 31/2 = 1.73   times smaller. For 
estimating the amplitude of the linked case in the yawing mode, we follow the same procedure, 
but now constraining the center-of-mass point to be fixed and taking into account the spring-
constant which is larger by a factor ~1.9 in this case (see Fig. 3). Compared to the linked rolling 
mode, the amplitude of the motions for the linked yawing mode is 1.69 times smaller. These 
results are utilized in Table 3 to calculate the effects on the beam position (X0 values), as was 
done in Table 2, but now with estimated relative vibration amplitudes rather than the 1 mm 
displacements assumed before. 
 
 
Table 3    Relative ∆X0 values for the estimated relative magnet vibration amplitudes (see text) 
 

 MODE D - F - D F - D - F 

Q1             ROLL -1.56 1.50 
     Q2       ROLL 4.76 -3.22 
          Q3   ROLL -1.97 2.95 
Q1             YAW 0.02 0.00 
     Q2        YAW 0.01 0.04 
          Q3   YAW -0.03 -0.02 
Addition in quadrature  5.39 4.62 
Q1-Q2-Q3   (linked) ROLL 0.71 0.71 
Q1-Q2-Q3 ` (linked) YAW -0.12 0.41 
Addition in quadrature  0.719 0.821 

 
 
To estimate the overall effect of the vibrations upon the beam we also calculate in Table 3 the 
additions in quadrature of the effects of the two linked vibrations, and separately of the effects of 
the six not linked motions. We see that this estimate leads to an average factor of ~6.5 reduction 
in beam fluctuation amplitude by rigidly linking the three singlets within each triplet. This factor 
was initially expected to be larger of β* values at the IP smaller than the 2m assumed here. 
However, the same calculations were repeated for β* = 1m, and an estimated reduction of ~6.3 
was obtained, i.e. not significantly different than for 2 m. The explanation is that the focusing for 
different β* values is really accomplished mostly by the area Q9-Q10 quadrupoles, and that the 
gradients in the triplets do not differ to much between β*=1m and β*=2m. 
 



There should in principle be no problems associated with the transverse rigidizing of the 
connections between singlets within each triplet [4] since they move together during cool down. 
One possible implementation would consist in replacing the presently installed tie-rods by larger 
diameter, perhaps hollow, cylinders [5].  Another possibility would be to consider split 
cylindrical “clam shells” that fit over the cold masses of adjacent magnets.  
 
Such mechanical improvements would not cause increased cooling requirements. Should a factor 
of ~6.5 amplitude reduction be insufficient, any further active or passive measures would be 
simplified and made more economical by requiring a smaller improvement and fewer cold-mass 
attachment points. It seems therefore that rigid connections between Q1, Q2 and Q3 should be 
the first step. 
 
 
Possible Implementations 
 
We now turn to the question of what type of mechanical connection between the singlets could 
be implemented to achieve to a large extent the advantages outlined in the previous section. The 
present arrangement is shown in Fig. 4. In this top view, one sees only the top 1” diameter tie 
rods used between consecutive singlets. The bottom tie rods are diametrically opposed to the top 
ones. The ends of these tie rods are threaded and attached to large lugs welded to the cold masses 
by means of nuts and spherical washers to accommodate slight misalignments. Even if these 
attachments are considered rigid, the 1” diameter tie rods are not substantial enough to affect the 
vibrations very substantially. This was shown in detailed ANSYS simulations [6], and, as seen 
below, we will arrive at the same conclusion with our simplified models. 

 
Fig. 4 Present tie rod connections between Q1 and Q2, and between Q2 and Q3. In this top 
view only the top tie rods are visible. Identical tie rods are installed at the bottom; diametrically 
opposed to the top ones.  The tie rods are 1” diameter stainless steel with treaded ends. They are 
fastened to lugs welded to the cold masses by means of nuts and spherical washers to 
accommodate small misalignments. Indicated in blue numbers are two dimensions not given in 
Table 1; namely the spacing between lugs and the diameter of the end volumes.  
 



 
The two solutions contemplated here are illustrated schematically in Fig. 5. On the one side we 
show additional tie rods. And on the other side we suggest the possibility of connecting the two 
magnets with a cylindrical stainless steel shell or sleeve welded, or otherwise fastened to the 
singlets at each end. We will try to estimate what would be required to achieve close-to-rigid 
motion of the joint triplet masses. In the case of the tie rods we will vary their number and 
diameter, and in the case of the sleeve we will vary its thickness 
 

 
 
Fig. 5 Schematic illustration of the two solutions analyzed in the present work to increase the 
rigidity of the Q1-Q2 and Q2-Q3 connections in order to ensure that the three singlets move as 
nearly as possible together as a rigid body. At the top it is shown how the number of tie bars may 
be increased, and we investigate a range of possible numbers and diameters. At the bottom it is 
suggested that a cylindrical stainless steel shell or sleeve may be fastened to the cold masses, 
and we obtain results as function of the wall thickness of this shell.  
 
 
 
While complete detailed simulations may be desirable and will perhaps be performed before a 
design is implemented, the purpose here is to roughly estimate in a simple way the manner in 
which the design parameters of the additional supports will affect the vibrations. For that purpose 
we study the two types of motions considered above (yawing and rolling, see Fig. 2), but now 
disregarding the main magnet supports, and taking only into account the forces and torques 
generated when the interconnecting structure (tie rods or sleeve) is deformed. We will have 
achieved our goal of nearly rigid motion if the corresponding eigen-frequencies are considerably 
higher than the ~10 Hz characteristic of the spring constants of the main supports. 
 
Top views of the motion configurations used for the calculations are shown in Fig. 6. Only Q2 
and Q3 were modeled, as they have the largest and similar masses and lengths (see Table 1). 
Intermediate values were adopted for these estimates, thus making the magnet pair symmetric to 
simplify the calculations. In Fig 6a we illustrate the yawing or rotational motion of the two 



coupled masses while 6b shows the rolling or translational motion. In this last case the masses 
are either assumed to be guided to remain parallel to each other, or equivalently (as shown in 
Fig. 6c) a spring with the appropriate spring constant is imagined to be attached at the center-of–
mass position. For strong tie rod or shell coupling this mode is fictitious and will in reality not 
have a significant amplitude. This is precisely the purpose of this exercise; to find a strong 
enough connection (high enough eigen frequency) to ensure that this type of motion be largely 
suppressed.   
 
 
 

 
 
Fig. 6  Top views of the simplified motion configurations used for the calculations. The only 
forces that are considered are those due to the deformations of the tie rods or of the cylindrical 
shell. Only Q2 and Q3 were modeled, as they have the largest and similar masses and lengths 
(see Table 1). Intermediate values were adopted for the estimates making the magnet pair 
symmetric to simplify the calculations. a) Yawing motion of the two coupled masses (see Fig. 2). 
b) Rolling motion of the two coupled masses. Here the masses are either assumed to be guided to 
remain parallel to each other, or equivalently c) a spring with the appropriate spring constant is 
imagined to be attached at the center-of–mass position.  
 
 
The frequencies for translation and for rotation (ft and fr respectively) are calculated using the 
harmonic oscillator equations: 
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Where M is the mass, IM the moment of inertia, kt [N/m] is the translational spring constant and 

kr [Nm/radian] is the rotational spring constant. 
 
Table 4 lists the values of the quantities used to calculate these frequencies. The other quantities 
that determine the frequencies are the number N of tie rods and their diameter D, and the 
thickness Ts of the shell. 
 
Table 4. Some of the quantities used to calculate the frequencies 
Quantity Symbol Value Unit 
Mass (average of Q1 and Q2) M 2420 kg 
Average length  L 4.64 m 
Average moment of inertia IM 4400 kg m2 
Stainless steel modulus of elasticity E 193,000 MPa 
Inner radius for supports (rods or shell) Rs 0.21 m 
Distance between support attachment points l 0.38 m 
 
 

 
Fig. 7 Schematic of the tie rods and shell deformations for the two type of motion depicted in 
Fig. 6. Examples for 4 tie rods are shown in the upper part of the figure (a and b), while the 
lower part (c and d) show the deformations of a cylindrical shell.  



 
 
The tie rods and shell deformations for the two type of motion depicted in Fig. 6 are shown in 
Fig. 7. To calculate the spring constants, we calculate the forces acting on the masses to the right 
caused by these deformations while the masses to the left are assumed to be stationary for this 
purpose. In reality both masses move in equal and opposite directions for the symmetric case 
considered here. Therefore the effective spring constants for calculating the frequencies will be 
twice the values obtained here. Examples for 4 tie rods are shown in the upper part of the figure 
(a and b), while the lower part (c and d) show the deformations of a cylindrical shell. Standard 
deflection formulas for beams [7] can be used for cases a, c and d.  
 
For case b, the most important contributions arise from the stretching of the tie bars on one side 
and their compression on the other. For the range of tie bar diameters considered here, their 
bending in case b makes an almost negligible contribution to the spring constant, but this 
contribution was nevertheless included in the calculations. 
 
The deflection formulas for beams were obtained as special cases of more general formulas 
given e.g. in reference 7.  For one end fixed and the other end guided so as to prevent rotation 
(cases a and c of Fig. 7), the displacement y for a force F applied at the moving end is: 
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where I is the area moment of inertia about the centroidal axis of the beam cross section, which 
for circular cross sections is given by: 
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where r is the outer radius of the beam and, ri is the inner radius in the case of an annular cross 
section (as is the case for the shell). 
 
For one end fixed and the other end free (case d of Fig. 7), the displacement y and the deflection 
angle ΘΘΘΘ  for a force F applied at the moving end are: 
 

IE
lF

y
××

×=
3

3
  7) 

 

IE
lF
××

×=
2

2
θ   8) 

 
 



The spring constants kt for calculating the translational frequencies (cases of Figs.7a and 7c) are 
then simply  2×××× F/y obtained from 5): 
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where I is given by 6) either for each of the N solid tie rods (ri = 0 in this case) or for the 
cylindrical shell (N=1 in this case). 
 
 
The rotational spring constant for the case of Fig 7d is twice the ratio of the torque or moment of 
the force F given by 8) with respect to the center of mass of the magnet divided by the deflection 
angle ΘΘΘΘ. 
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And finally, for the case of Fig. 7b, there is a contribution to the rotational spring constant from 
the bending of each of the N tie-rods given approximately by equation 10) with the appropriate 
value of I. But by far the largest contribution comes from the moments with respect to the center 
of mass of the longitudinal forces generated by stretching and compressing the individual tie 
rods. If we call Hi the distance of tie rod #i from the median plane (see Fig 7) then its 
contribution due to stretching or compressing to the rotational spring constant will be: 
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RESULTS 
 
An Excel spreadsheet was prepared to carry out the eigen frequency calculations described 
above. Some results obtained with this spreadsheet are shown in Fgs 7 and 8 
 
Figure 7 shows results of the resonant frequencies of the systems sketched in Fig. 6 for the case 
of six stainless steel tie rods (uniformly spaced) as a function of their diameter. This is an overly 
optimistic example, since there is probably not enough space to accommodate this number of tie 
rods, especially not for the larger diameters. We see that for the “translation” or rolling mode 
(which is the one of concern), one barely reaches an eigen frequency of ~10 Hz even if one could 
install six 1” diameter tie rods. Thus, increasing the number of tie rods and/or their diameter 
doesn’t seem to be a viable solution. 
 
 
 



  

 
Fig. 7 Results of the resonant frequencies of the systems sketched in Fig. 6 for the case of six 
stainless steel tie rods (uniformly spaced) as a function of their diameter. This is an overly 
optimistic example, since there is probably not enough room  to accommodate this number of tie 
rods, especially not for the larger diameters. We see that for the “translation” or rolling mode 
(which is the one of concern), one barely reaches an eigen frequency of ~10 Hz even if one could 
install six 1” diameter tie rods. Ths, increasing the number of tie rods and/or their diameter 
doesn’t seem to be a viable solution. 
 
 

 
Fig. 8 Results of the resonant frequencies of the systems sketched in Fig. 6 for the case of a 
cylindrical stainless steel sleeve or shell welded to the cold masses as indicated in the lower part 
of Fig. 5. The eigen frequencies are plotted as function of the shell thickness. We see that for 
thicknesses larger than  2 or 3 mm, frequencies well above 10 Hz are obtained, especially for the 
motion that is of greatest concern for its relatively large effect on the beam. 
 



In contrast, the results shown in Fig 8 are much more promising. We see here the estimated 
resonant frequencies of the systems sketched in Fig. 6 for the case of a cylindrical stainless steel 
sleeve or shell welded to the cold masses as indicated in the lower part of Fig. 5. The eigen 
frequencies are plotted as function of the shell thickness. We see that for thicknesses larger than 
say  2 or 3 mm, frequencies well above 10 Hz are obtained, especially for the translation-type 
motion which is of greatest concern for its relatively large effect on the beam. 
 
 
CONCLUSIONS 
 
A relatively thin cylindrical stainless steel shell, perhaps 1/8” thick, welded or otherwise rigidly 
attached to the ends of the cold masses would achieve to a large extent the factor ~6 reduction in 
10 Hz beam motions estimated in the first part of this report. Such a shell could probably be 
fabricated in two halves, perhaps with overlapping longitudinal seams fastened rigidly together 
with screws or welds in order to preserve the full strength of the cylindrical shell.  
 
There may be technical difficulties in implementing this change, such as fitting the shells to the 
non-concentric “end volumes” or due to welding-induced misalignments. These would need to 
be considered carefully in the design modification.  The positions of the magnets must not be 
affected by more than 1 or 2 mils, which is the present surveying tolerance. Surveys would be 
performed before and after the installation to ensure that no excessive displacements have 
occurred. 
 
One could consider providing easier access to the enclosed volume by making part of this shell a 
removable panel fastened with screws. The effective strength of the connection would not be 
significantly affected as long as good metal-to-metal contact is ensured along the edges of this 
panel. Since elastic forces are small for micron-size vibrations, frictional forces will be sufficient 
to totally prevent any slippage. 
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